

COMMENTARY

Texaphyrins

NEW DRUGS WITH DIVERSE CLINICAL APPLICATIONS IN RADIATION AND PHOTODYNAMIC THERAPY

Jonathan L. Sessler*† and Richard A. Miller‡

*Department of Chemistry & Biochemistry, University of Texas, Austin, TX 78712; and ‡Pharmacyclics Inc., Sunnyvale, CA 94086, U.S.A.

ABSTRACT. The texaphyrins are quintessential metal-coordinating expanded porphyrins. They constitute a new series of synthetic porphyrin analogues that show promise as drugs for use in a range of medical therapies. Currently, two different water-solubilized lanthanide(III) texaphyrin complexes, namely the gadolinium(III) and lutetium(III) derivatives 1 and 2 (Gd-Tex and Lu-Tex, respectively), are being tested clinically. The first of these, XCYTRIN™, is in a pivotal Phase III clinical trial as a potential enhancer of radiation therapy for patients with metastatic cancers to the brain receiving whole brain radiation therapy. The second, in various formulations, is being tested as a photosensitizer for use in: (i) the photodynamic treatment of recurrent breast cancer (LUTRIN™; Phase II clinical trials complete), (ii) photoangioplastic reduction of atherosclerosis involving peripheral arteries (ANTRIN™; now in Phase II testing), and (iii) light-based treatment of age-related macular degeneration (OPTRIN™; currently in Phase I clinical trials), a vision-threatening disease of the retina. Taken in concert, these two metallotexaphyrins provide a powerful new class of experimental drugs whose diverse potential utility is abetted by a combination of well-optimized physical features, favorable tissue biolocalization characteristics, and novel mechanisms of action. Interestingly, these mechanisms may alter conventional wisdom regarding mechanisms of radiation therapy and the pathophysiology of atherosclerosis. BIOCHEM PHARMACOL 59;7:733−739, 2000. © 2000 Elsevier Science Inc.

KEY WORDS. texaphyrins; radiation sensitization; photodynamic therapy; photoangioplasty

Chemical agents that can improve or potentiate the efficacy of various therapies constitute an important area of interest to medicinal chemists and medical practitioners alike [1]. Such agents not only can make existing treatment modalities more effective and render various experimental therapies viable, they can also, in a more generalized sense, provide insights into the mode of action of various treatments whose chemical or biological basis for action remains but poorly understood. In this commentary, a new class of seemingly powerful agents, the lanthanide texaphyrins [2–4], is discussed. These systems, now in advanced stages of clinical testing in diverse diseases, show promise in making radiation-based cancer therapy more effective, while enhancing, or even enabling, photodynamic treatments of tumors, atherosclerosis, and diseases of the retina.

The texaphyrins, represented by prototypic complexes 1 and 2 [Gd-Tex§ (motexafin gadolinium) and Lu-Tex (motexafin lutetium), respectively], are pentaaza, Schiff base macrocycles that bear a strong, albeit "expanded," resemblance to the porphyrins and other naturally occurring

tetrapyrrolic prosthetic groups. For instance, like the porphyrins, the texaphyrins are fully aromatic and highly colored. They are, however, dark green rather than purplish-red (the lowest energy transition falls, for instance, at >700 nm, rather than at ca. 620 nm). Also, in contradistinction to the porphyrins, the texaphyrins are monoanionic ligands that contain five, rather than four, coordinating nitrogen atoms within their central core. The fact that this central core is roughly 20% larger than that of the porphyrins further endows the texaphyrins with an ability to form stable, nonlabile 1:1 complexes with a range of larger metal cations, including specifically those of the trivalent lanthanide series. Abetting this special stability is the fact that, in the case of texaphyrins, metal insertion is accompanied by ligand oxidation. As a result, the macrocyclic skeleton tightens up around the metal cation, resulting in a very high barrier for disassociation that is not observed in the case of the corresponding lanthanide(III) porphyrin complexes [2].

One other way in which the texaphyrins differ from porphyrins is in terms of their redox potential. While both systems are reasonably hard to oxidize, texaphyrin complexes such as 1 and 2 are far easier to reduce than typical metalloporphyrins { $E_{1/2} = -0.041 \text{ V}$ and -0.044 V vs normal hydrogen electrode (in dimethylformamide) [5] vs -1.41 V for zinc(II) octaethylporphyrin (normal hydrogen

[†] Corresponding author. Tel. (512) 471-5009; FAX (512) 471-7550; E-mail: sessler@mail.utexas.edu

[§] Abbreviations: Gd-Tex, gadolinium(III) texaphyrin (1); Lu-Tex, lute-tium(III) texaphyrin (2); XRT, x-ray radiation therapy; MRI, magnetic resonance imaging; PDT, photodynamic therapy; and ARMD, age-related macular degeneration.

734 J. L. Sessler and R. A. Miller

STRUCTURE 1.

electrode in dimethylformamide) [6]. It was a recognition of this fact, coupled with the expectation that the texaphyrins would show the tumor selectivity characteristic of many porphyrins [1], that led to the consideration that Gd-Tex (1) might function as an XRT-enhancing agent [3]. Another appealing feature of this compound was its MRI detectability [3], allowing non-invasive evaluation of tissue localization and clearance. These particular applications of gadolinium(III) texaphyrin are discussed immediately below.

GADOLINIUM(III) TEXAPHYRIN—A RADIATION ENHANCER

Improving the clinical benefit of radiation therapy has been a long-standing goal in cancer research. One approach has been to administer agents to enhance the sensitivity of tumors to radiation therapy [7–11]. Currently, there is no Food and Drug Administration (FDA)-approved radiation sensitizer. Nonetheless, the need for an agent, or agents, that could help potentiate the efficacy of XRT is cogent and real. Every year, more than 750,000 patients in the United States undergo radiation treatment for cancer. Unfortunately, in many patients the treatment is of limited value because of inadequate efficacy or serious toxicity. It is believed that this oftentimes limiting therapeutic benefit both reflects damage to normal cells and derives from the presence of hypoxic cells within the tumor. Hypoxic cells are typically 2.5 to 3 times less sensitive to radiation than oxygenated cells. Not surprisingly, therefore, several different approaches to overcoming the radioresistance of hypoxic cells, e.g. radiation fractionation or administration of hyperbaric oxygen, have been pursued. Whereas some success has been encountered using some of these strategies, an alternative approach, involving the use of radiation sensitizers, is also attractive [7-11]. In this context, the halogenated pyrimidines and the nitroimidazoles have been studied extensively [12, 13]. However, at present neither class of agents has been demonstrated to result in a

clinically beneficial outcome because of inadequate activity *in vivo*, toxicity, and non-selectivity for tumors. Thus, the search for improved radiation sensitizers continues. Ideally, such improved sensitizing systems should demonstrate low inherent toxicity, operate in both the presence and absence of oxygen, not require incorporation into DNA, and possess tumor selectivity [1].

We think that XCYTRIN™ injection, a gadolinium(III) texaphyrin (1) drug, not only fulfills the above criteria but also constitutes a promising new therapeutic agent that can enhance significantly the efficacy of radiation therapy. To date, its utility in this regard has been demonstrated in vivo in three murine tumor models (EMT6, SMT-F, and MCa) having very different biological behavior [3, 14]. As illustrated in Fig. 1 for one representative tumor model, these in vivo model systems have demonstrated a drug dose-response effect for both single-fraction and multi-fraction radiation treatment regimens. In these studies, substantial tumor growth delay and cures result from using drug dosing and radiation fractionation schedules similar to those used clinically. Recently, a Phase Ib/II clinical trial in patients with brain metastases was completed [15]. It demonstrated improved survival in 61 patients receiving XCYTRIN™ plus radiation compared with two independent casematched historical controls involving radiation therapy alone.* Patients receiving XCYTRIN™ were less likely to die of complications related to tumor progression in the brain, indicating that the drug improved local control by radiation therapy. MRI scanning confirmed that XCYTRIN™ accumulates in and is retained selectively in tumors and does not localize appreciably in adjacent normal tissue [16]. The drug also was found to be well-tolerated, with hepatocellular damage as the dose-limiting toxicity, presumably related to the known clearance and excretion of the drug by the liver. In any event, the results of these clinical trials, together with the efficacy demonstrated in animal models, provide the rationale for expeditiously testing this agent in recently commenced randomized Phase III clinical trials where its efficacy and safety can be proven definitively. In addition to studies in patients with brain metastases, the National Cancer Institute has recently begun Phase I testing of XCYTRINTM as a radiation enhancer in several other tumor types.

Given these promising results, it is not surprising that considerable effort has been devoted to understanding the underlying mechanisms of action of XCYTRINTM [5, †, ‡] While these efforts are still ongoing, it is becoming increasingly clear that this unique XRT enhancer operates in a way that has little precedent within the confines of traditional approaches to radiation sensitizer development. Spe-

^{*} Carde P, Timmerman B, Koprowski C, Arwood D, Ford J, Mehta M, Tishler R, Larner J, Nieder C, Downs M, Scott C, Murray K, Miles D, Miller RA and Renschler MF, manuscript in preparation.

 $[\]dagger$ Sessler JL, Tvermoes NA, Guldi DM and Mody TD, manuscript in preparation.

[‡] Sessler JL, Tvermoes NA, Guldi DM, Mody TD and Magda DJ, manuscript in preparation.

Texaphyrins 735

Fractionated Gd-Tex Radiosensitization Study 4 Gy

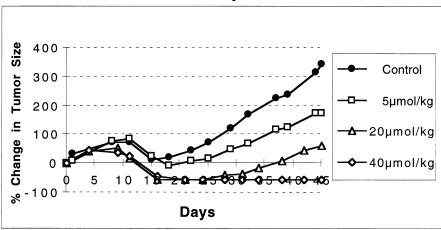


FIG. 1. Multiple-fraction radiation sensitization study following i.v. administration of XCYTRINTM injection, a Gd-Tex-based radiation sensitizer. Balb/c mice (six per group) were injected intravenously via the tail vein with 5, 20, or 40 μmol/kg of XCYTRINTM, 7 days after intramuscular injection of EMT6 tumor cells into the hind flank of the right rear leg. Two hours later, a dose of 4 Gy of radiation was administered. Administration of the XCYTRINTM drug and radiation were repeated daily for 4 more days. A control group of six Balb/c mice with implanted EMT6 tumors were treated with radiation only. Data acquired included tumor-free (at primary site) survival and periodic measurements of tumor size. Not only do the results show that the combination of the XCYTRINTM agent and multiple-fraction radiation significantly decreased tumor growth as compared with treatment by radiation only, but all mice receiving the highest dose of 40 μmol/kg and five of the six mice receiving 20 μmol/kg showed no evidence of disease after 45 days. Reproduced with permission from *Proc Natl Acad Sci USA* 93: 6610–6615, 1996. Copyright (1996) National Academy of Sciences, U.S.A. [Ref. 3.]

cifically, it is believed, on the basis of pulse radiolytic model studies, that Gd-Tex (the active dicationic ingredient in XCYTRIN™ injection), an easy-to-reduce macrocycle (vide supra), acts to "sponge up" electrons formed as the result of the interactions of x-rays with water. As a consequence, the combination of x-rays and Gd-Tex leads, in the absence of oxygen, to an augmented concentration of hydroxyl radicals (the other and more cytotoxic daughter product formed from the reaction of x-rays with water) while concurrently preventing the "pseudo-recombination" of electrons with sublethal products formed from the reaction of hydroxyl radicals with various biological substrates. In the presence of oxygen, this same initial electron capture event produces a metastable reduced texaphyrin product (Gd-Tex⁺.) that reacts with oxygen to form superoxide anion. Thus, depending on the conditions, XCYTRIN™ can form two different kinds of so-called reactive oxygen species.

The fact that the combination of Gd-Tex and x-rays serves to produce, *inter alia*, reactive oxygen species has important biological consequences. This is because such species, when formed in lysosomes and mitochondria (sites where Gd-Tex is believed to localize), will not only trigger apoptosis but also release so-called messenger factors that may induce the programmed death of other nearby cells [17, 18]. Thus, a multi-center cascade effect can be induced that is very different in its mode of action from the classic, enhanced DNA cleaving mechanism proposed for nitroimidazoles and other so-called hypoxic cell sensitizers. In

particular, such a cascade-based cell-killing process, as well as possible concomitant changes in cell-cycle checkpoint-dependent function [19], are expected to lead to high *in vivo* efficacy but little or no activity in simple clonogenic or *in vivo—in vitro* assays. To the best of our knowledge, such predictions are fully consistent with experimental results.

The above dichotomy is of more than academic interest. Specifically, the finding that XCYTRINTM works well *in vivo* but demonstrates minimal activity *in vitro* compared with hypoxic cell sensitizers raises the highly intriguing question of whether simple *in vitro* or *in vitro—in vivo* screening methods should continue to be used exclusively for the identification of potential anti-cancer treatments. Certainly, our own experience with XCYTRINTM leads us to argue that they should not.

LUTETIUM(III) TEXAPHYRIN—A NOVEL PHOTOSENSITIZER WITH DIVERSE APPLICATIONS

PDT is an emerging modality that shows considerable promise for the treatment of solid tumors and a range of other disorders [1, 20–23]. It is predicated on the use of a sensitizing dye (photosensitizer) that is administered, usually via intravenous injection, and allowed to localize selectively in a cancerous region or other tissue sites of interest (e.g. atheromatous plaque and neovascularized regions). Visible light irradiation is then used to activate the sensitizer and produce singlet oxygen, the main putative

J. L. Sessler and R. A. Miller

cytotoxic agent. The potential specificity derived from combining drug selectivity with targeting of light activation makes PDT particularly appealing.

Unfortunately, in marked contrast to x-ray radiationbased therapy of cancer, the photodynamic treatment of tumors has been limited. In part, this reflects the barrier associated with the introduction of any new treatment modality. However, the main reason why PDT is not widespread is that suitable photosensitizers are not avail-Currently, only one PDT photosensitizer, PHOTOFRIN® (porfimer sodium), has been approved by the FDA [1, 24]. This drug, being a complex mixture of porphyrinic species and plagued with a uniformly high level of induced cutaneous phototoxicity, is far from ideal. Indeed, it has been approved for only a limited set of indications (e.g. obstructing esophageal cancers and superficial bronchial lung cancer).

In view of the problems inherent in PHOTOFRIN®, considerable effort is being devoted to the synthesis and study of new, so-called second generation PDT sensitizers that might make PDT more useful [24]. Of the various second generation systems being developed, we think that lutetium texaphyrin (Lu-Tex, 2) stands out as being among the best; it is endowed with attributes that make it particularly attractive, not just for the photodynamic treatment of cancer but also for the photoangioplastic reduction of atherosclerotic plaque and the treatment of ARMD [4, 25–35].

The most obvious and, in some respects, important feature of Lu-Tex is that it is water-soluble and easy to administer via i.v. injection [4]. In contradistinction to PHOTOFRIN™, it is also a single unique compound that possesses a lowest energy maximum (at $\lambda_{max} = 732$ nm) in the far-red portion of the visible spectrum, where blood and bodily tissues are most transparent [36]. This provides for one of the major advantages of Lu-Tex, namely activation by light that is capable of penetrating through tissue and blood. Being diamagnetic and containing a bona fide heavy atom (lutetium), it also produces singlet oxygen in good quantum yield (between 10 and 70%, depending on conditions [31, 37]) when irradiated at this lowest energy maximum. Further, and on a very different level, Lu-Tex exhibits low inherent dark toxicity, which is related primarily to its more rapid clearance from the plasma. Specifically, in humans this agent is cleared on a time scale that is measured in hours [27], whereas PHOTOFRIN® is cleared on a time scale that is measured in months [38]. The more rapid clearance of Lu-Tex is likely responsible for its reduced cutaneous phototoxicity as compared with PHOTOFRIN®. Nonetheless, in spite of its relatively rapid clearance, it still is retained selectively in neoplastic sites (by factors of 10:1 relative to surrounding normal tissues) as well as in macrophages present in atherosclerotic plaque and in the neovasculature associated with ARMD [25–35]. While the origins of this selectivity remain the subject of ongoing mechanistic investigations, they are thought to reflect in part the fact that Lu-Tex binds well to, and presumably modifies, low density lipoproteins [24]. Once modified in this way, these latter blood components are believed to be taken up by rapidly proliferating cells, macrophages, and the neovasculature of ARMD.

LUTRIN™ injection is the Lu-Tex drug formulation being developed for use as a photosensitizer in the PDT treatment of cancer. As illustrated in Fig. 2 for one particular tumor model, it shows remarkable activity in the PDT of cancer in animal models [4]. LUTRIN™ also was found to be active in a Phase I clinical study for the treatment of metastatic tumors to the skin and subcutaneous tissues [28] and was the subject of a recently completed Phase II clinical trial for recurrent breast cancer to the chest wall.

Potentially more important than even PDT is a new application of light and photosensitizing drugs that we are terming photoangioplasty or photoatherolysis [1]. Photoangioplasty resembles more classic PDT in its photophysics if not in actual application-related details. Briefly, the basic idea is to administer a photosensitizing agent that localizes to atherosclerotic plaque and then use light-based activation (through, for example, an optical fiber catheter inserted into the blood vessel) to effect plaque removal. Given that this is a procedure that needs to be effected in the presence of blood, the requirement for an agent that not only localizes to plaque but also is activated by blood/tissue penetrating non-thermal far red light becomes clear. This makes Lu-Tex and ANTRIN™, the photoangioplastic agent derived from it, seemingly ideal. Such materials are retained selectively in atherosclerotic plaque [30] and display a lowest energy $\lambda_{\rm max}$ of 732 nm, a wavelength that is transmitted through blood [31].

To date, the efficacy of ANTRIN™ photoangioplasty has been demonstrated in various animal models [30, 32, 33], and this same agent is now in Phase II clinical trials for the treatment of peripheral arterial disease. Impressive results have been obtained in a recently completed Phase I trial as reported by Kramer et al. [39]. Patients treated with ANTRIN™ photoangioplasty demonstrated overall improvement in angiograms, ankle-brachial index, and clinical outcomes assessments. An illustrative result is seen in Fig. 3. This procedure is performed using standard percutaneous endovascular techniques in a catheterization laboratory. To the best of our knowledge, this is the first non-mechanical clinical technique effective in reducing atherosclerosis. Current procedures, such as balloon angioplasty, are hindered by thrombosis, restenosis, or their inability to treat diffuse disease. Thus, we like to think our results and the progress they represent augur well for the use of texaphyrins in photoangioplasty. Indeed, in conjunction with appropriately administered red light they could be used to help control several of the most widespread and debilitating of all medical conditions, namely atherosclerosis of peripheral arteries and coronary arteries, as well as, potentially, diseases associated with impaired cerebrovascular circulation.

Many of the same attributes that make drugs derived from Lu-Tex (viz. LUTRIN™ and ANTRIN™) so attrac-

Texaphyrins 737

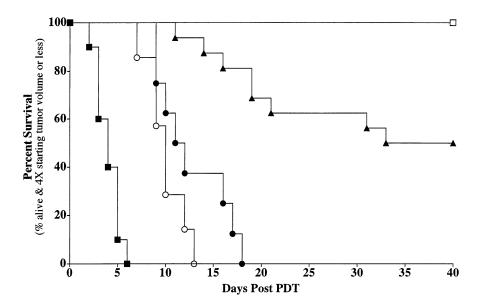


FIG. 2. Kaplan–Meier curve for survival or time for tumor to reach four times starting volume for SMT-F tumor-bearing mice treated with 10 μ mol/kg of LUTRINTM, a Lu-Tex-based photosensitizer. The mice were irradiated 3 hr (N = 9, \square), 5 hr (N = 16, \blacktriangle), 12 hr (N = 8, \blacksquare), and 24 hr (N = 7, \bigcirc) after injection of LUTRINTM photosensitizer with 150 J/cm² at 150 mW/cm² at 732 nm. A matched set of control animals received light irradiation alone (N = 10, \blacksquare). Initial tumor volumes were 70 \pm 35 mm³. During the study, all animals whose tumor volume increased to four times the initial tumor volume were subjected to euthanasia. On the other hand, all animals that were still in the study at day 40 displayed no evidence of disease at the tumor site. Reproduced with permission from *Photochem Photobiol* 63: 892–897, 1996. Copyright (1996) American Society for Photobiology. [Ref. 4.]

tive in terms of treating cancer and atherosclerosis also make Lu-Tex of interest in terms of treating ARMD. This condition, which is the leading cause of severe visual impairment and blindness in Americans over age 60, is caused by angiogenesis of abnormal vessels in the choroid of the retina. These diseased vessels leak fluid, which results in visual impairment. While currently there is no cure for ARMD, the use of a photosensitizing drug that localizes in this neovasculature in conjunction with site-specific redlight photoactivation offers the possibility for clinically

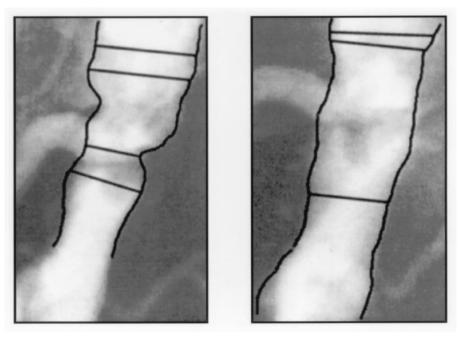


FIG. 3. Left: Pretreatment angiogram of the femoral artery of a patient enrolled in a Phase I study of the Lu-Tex-based ANTRINTM photosensitizer, showing the severe narrowing of this vessel caused by atherosclerosis. Right: One month after a single treatment with ANTRINTM photosensitizer-based angioplasty, a repeat angiogram shows a 50% increase in the diameter of the arterial opening and increased blood flow. Reproduced with permission. Copyright (1998) Pharmacyclics Inc.

J. L. Sessler and R. A. Miller

useful control. To date, the Lu-Tex-derived drug OPTRIN™, an agent being developed specifically for the treatment of ARMD, has been found (when activated with red light) to destroy diseased vessels in preclinical studies [34, 35, *] and is being evaluated currently for safety, drug/light dosing, and efficacy in a Phase Ib/II clinical trial. Meanwhile, a different photosensitizing agent developed by others, namely verteporfin (VISUDYNE™) [40], has completed Phase III randomized clinical trials for the "wet" form of ARMD. Thus, the possibilities for extending the scope of PDT into this important ocular realm look exceedingly attractive at present.

CONCLUDING REMARKS

The unique combination of desirable chemical attributes and highly attractive biolocalization properties makes the texaphyrins a potentially powerful class of new therapeutic agents. While developed so far in the context of the gadolinium(III) and lutetium(III) complexes 1 and 2 only, the diversity of applications to which the photosensitizing drug substance Lu-Tex (2) may be applied, coupled with the unique mechanism of action displayed by its XRTenhancing gadolinium(III) analogue, Gd-Tex (1), leads us to propose that these particular texaphyrins will emerge to fill a number of currently unmet medical needs. The fact, however, that a wide range of other texaphyrin complexes are either known or easily envisioned means that the benefit of this series of molecules could extend far beyond the important applications detailed in this commentary. For instance, the possibility of using Lewis acidic lanthanide(III) texaphyrins to effect RNA hydrolysis selectively [41, 42] and thus make more viable the therapeutic utility of antisense technology is currently being explored in our laboratories, as is the use of various texaphyrin complexes to augment, as so-called chemosensitizers, the efficacy of classic anticancer chemotherapy. These new opportunities should continue to make the texaphyrins of interest to all those involved in the fields of chemistry, medicine, biochemistry, and pharmacology.

The work reported in this Commentary was supported, in part, by a National Institutes of Health grant to J. L. S. (CA 68682). We are grateful to our many colleagues at The University of Texas and at Pharmacyclics Inc. who, along with a dedicated cadre of collaborators, made the described accomplishments possible. We are particularly indebted to Alice Lin, Tarak Mody, Greg Hemmi, Darren Madga, Kathryn Woodburn, Qing Fan, Dales Miles, Nicolai Tvermoes, and Dirk Guldi for their help with the preclinical aspects of the work described herein.

References

 Mody TD and Sessler JL, Porphyrin- and expanded porphyrin-based diagnostic and therapeutic agents. In: Supramolecu-

- lar Technology (Ed. Reinhoudt D), pp. 245–299. Wiley, Chichester, 1999.
- Sessler JL, Hemmi G, Mody TD, Murai T, Burrell A and Young SW, Texaphyrins: Synthesis and applications. Acc Chem Res 27: 43–50, 1994.
- Young SW, Qing F, Harriman A, Sessler JL, Dow WC, Mody TD, Hemmi GW, Hao Y and Miller RA, Gadolinium(III) texaphyrin: A tumor selective radiation sensitizer that is detectable by MRI. Proc Natl Acad Sci USA 93: 6610–6615, 1996
- Young SW, Woodburn KW, Wright M, Mody TD, Fan Q, Sessler JL, Dow WC and Miller RA, Lutetium texaphyrin (PCI-0123): A near-infrared water-soluble photosensitizer. Photochem Photobiol 63: 892–897, 1996.
- Sessler JL, Tvermoes NA, Guldi DM, Mody TD and Allen WE, One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins. J Phys Chem A 103: 787–794, 1999.
- Davis DG, Electrochemistry of porphyrins. In: The Porphyrins (Ed. Dolphin D), pp. 127–152. Academic Press, New York, 1978.
- 7. Beard CJ, Coleman CN and Kinsella TJ, Radiation sensitizers. In: Cancer: Principles & Practice of Oncology (Eds. DeVita VT Jr, Hellman S and Rosenberg SA), pp. 2701–2713. J. B. Lippincott, Philadelphia, 1993.
- 8. Hall EJ, Radiosensitizers and bioreductive drugs. In: *Radiobiology for the Radiobiologist* (Ed. Hall EJ), pp. 165–181. J. B. Lippincott, Philadelphia, 1994.
- Brada M and Ross G, Radiotherapy for primary and secondary brain tumors. Curr Opin Oncol 7: 214–219, 1995.
- Coleman CN, Radiation and chemotherapy sensitizers and protectors. In: Cancer Chemotherapy and Biotherapy (Eds. Chabner BA and Long DL), pp. 553–583. Lippincott-Raven, Philadelphia, 1996.
- 11. Wasserman TH, Chapman JD, Coleman CN and Kligerman MM, Chemical modifiers of radiation. In: *Principles and Practice of Radiation Oncology* (Eds. Peres CA and Brady LW), pp. 685–704. Lippincott-Raven, Philadelphia, 1998.
- Wasserman TH, Stetz JA and Phillips TL, Radiation therapy group clinical trials with misonidazole. Cancer 47: 2382– 2390, 1981.
- 13. Kinsella TJ, Russo A, Mitchell JB, Rowland J, Jenkins J, Schwade J, Myers CE, Collins JM, Speyer J, Kornbluth P, Smith B, Kufta C and Glatstein E, Continuous intravenous infusions of bromodeoxyuridine as a clinical radiosensitizer. *Int J Radiat Oncol Biol Phys* 10: 69–76, 1984.
- 14. Miller RA, Woodburn K, Fan Q, Renschler M, Sessler JL and Koutcher JA, *In vivo* animal studies with gadolinium (III) texaphyrin as a radiation enhancer. *Int J Radiat Oncol Biol Phys* **45:** 981–999, 1999.
- 15. Timmerman B, Carde P, Koprowski C, Arwood D, Ford J, Mehta M, Tishler R, Larner J, Miller R, Koffler-Horovitz S, Hoth D and Renschler M, Phase Ib/II trial of the radiation sensitizer gadolinium texaphyrin (Gd-Tex) for patients with brain metastases: Final results. Int J Radiat Oncol Biol Phys 42 (Suppl):198, 1998.
- Rosenthal DI, Nurenberg P, Becerra CR, Frenkel EP, Carbonne DP, Lum BL, Miller R, Engel J, Young S, Miles D and Renschler MF, A phase I single-dose trial of gadolinium texaphyrin (Gd-Tex), a tumor selective radiation sensitizer detectable by magnetic resonance imaging. Clin Cancer Res 5: 739–745, 1999.
- 17. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B and Kroemer G, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–377, 1995.

^{*} Blumenkranz MS, Woodburn KW, Qing F, Verdooner S, Kessel D and Miller RA, manuscript submitted for publication.

Texaphyrins 739

Papa S and Skulchev VP, Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174: 305–319, 1997.

- 19. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B and Williams J, Cell-cycle arrest versus cell death in cancer therapy. *Nat Med* 3: 1034–1036, 1997.
- Dougherty TJ, Henderson BW, Schwartz S, Winkelman JW and Lipson RL, Historical perspective. In: *Photodynamic Therapy*, *Basic Principles and Clinical Applications* (Eds. Henderson BW and Dougherty TJ), pp. 1–18. Marcel Dekker, New York, 1997
- 21. Pass HI, Photodynamic therapy in oncology: Mechanisms and clinical use. *J Natl Cancer Inst* **85**: 443–456, 1993.
- 22. Morgan AR, Strategies for the development of photodynamic sensitizers. Curr Med Chem 2: 604–615, 1995.
- Kessel D, Photodynamic therapy of neoplastic disease. Drugs Today 32: 385–396, 1996.
- 24. Rouhi AM, Let there be light and let it heal. C & E News, November 2, 1998: 22–27, 1998.
- 25. Woodburn KW, Young SW and Miller RA, Influence of drug and light regimens in determining PDT efficacy with lutetium texaphyrin. *Proc SPIE Int Opt Eng* **2675**: 172–178, 1996.
- Woodburn KW, Fan Q, Miles DR, Kessel D, Luo Y and Young SW, Localization and efficacy analysis of the phototherapeutic lutetium texaphyrin (PCI-0123) in the murine EMT6 sarcoma model. *Photochem Photobiol* 65: 410–415, 1997.
- Woodburn KW, Fan Q, Kessel D, Luo Y and Young SW, Photodynamic therapy of B16F10 murine melanoma with lutetium texaphyrin. *Invest Dermatol* 110: 746–751, 1998.
- 28. Renschler MF, Yuen AR, Panella TJ, Wieman TJ, Dougherty S, Esserman L, Panjehpour M, Taber SW, Fingar VH, Lowe E, Engel JS, Lum B, Woodburn KW, Cheong W-F and Miller RA, Photodynamic therapy trials with lutetium texaphyrin (Lu-Tex) in patients with locally recurrent breast cancer. Proc SPIE Int Opt Eng 3247: 35–39, 1998.
- 29. Woodburn KW, Young SW, Qing F, Miles DR and Thiemann P, Light emitting diode versus laser irradiation phototherapy with lutetium texaphyrin (PCI-0123). *Proc SPIE Int Opt Eng* **2972**: 46–53, 1997.
- Woodburn KW, Fan Q, Kessel D, Wright M, Mody TD, Hemmi G, Madga D, Sessler JL, Dow WC, Miller RA and Young SW, Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg 14: 343–348, 1996.
- 31. Sessler JL, Dow WC, O'Connor D, Harriman A, Hemmi G, Mody TD, Miller RA, Qing F, Springs S, Woodburn K and

- Young SW, Biomedical applications of lanthanide(III) texaphyrins. Lutetium(III) texaphyrins as potential PDT photosensitizers. *J Alloys Compd* **249**: 146–152, 1997.
- Woodburn KW, Qing F, Kessel D and Young SW, Photoeradication and imaging of atheromatous plaque with texaphyrins. Proc SPIE Int Opt Eng 2970: 44–50, 1997.
- Woodburn KW, Young SW, Fan Q, Kessel D and Miller R, Selective uptake of texaphyrins by atheromatous plaque. Proc SPIE Int Opt Eng 2671: 62–71, 1996.
- 34. Arbour JD, Connolly EJ, Graham K, Carson D, Michaud N, Flotte T, Gragoudas ES and Miller JW, Photodynamic therapy of experimental choroidal neovascularization in a monkey model using intravenous infusion of lutetium texaphyrin. *Invest Ophthalmol Vis Sci* 40: S401, 1999.
- Graham KB, Arbour JD, Connolly EJ, Delori F, Carson D, Gragoudas ES and Miller JW, Digital angiography using lutetium texaphyrin in a monkey model of choroidal neovascularization. *Invest Ophthalmol Vis Sci* 40: S402, 1999.
- 36. Wan S, Parrish JA, Anderson RR and Madden M, Transmittance of nonionizing radiation in human tissues. *Photochem Photobiol* 34: 679–681, 1981.
- Grossweiner LI, Fernandez JM, Bilgin MB and Mody TD, Singlet oxygen generation by metallotexaphyrins. *Photochem Photobiol*, in press.
- 38. Bellnier DA and Dougherty TJ, A preliminary pharmacokinetic study of intravenous photofrin in patients. *J Clin Laser Med Surg* 14: 311–314, 1996.
- 39. Kramer P, Rockson S, Razavi M, Adelman D, ANTRIN™ photoangioplasty: Results of a Phase I trial of a novel therapeutic modality in patients with lower extremity arterial atherosclerosis. *Eur Heart J* 20: 1555, 1999.
- Boyle RW and Dolphin D, Structure and biodistribution relationships of photodynamic sensitizers. *Photochem Photobiol* 64: 469–485, 1996.
- 41. Magda D, Miller RA, Wright M, Rao J, Sessler JL, Iverson BL and Sansom PI, Texaphyrin-based nuclease analogs, Rationally designed approaches to the catalytic cleavage of RNA and DNA targets. In: DNA and RNA Cleavers and Chemotherapy of Cancer and Viral Disease (Ed. Meunier B), NATO ASI Series C, Vol. 479, pp. 337–353. Kluwer, Amsterdam, 1996.
- Magda DM, Wright M, Crofts S, Lin A and Sessler J, Metal complex conjugates of antisense DNA which display ribozyme-like activity. J Am Chem Soc 119: 6947–6948, 1997.